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Abstract. An iterative technique is displayed whereby factors of
arbitrary degree can be found for polynomials in one variable. Con-
vergence is shown to occur always if a certain Jacobian does not
vanish and if the initial approximation to a factor is near enough
to an actual factor. The process is of third order and uses the
second-order partial derivatives of certain associated polynomials.
Because of the special nature of these associated polynomials and
the technique developed, the computation time of a single iterative

step is not excessive.

1. Description of the Process

Let a polynomial of degree n in z be

n .

(1) f(z) = | a.,z ~,a,=1.

i=0 *

Let 1 <m < n and let £(z) be factorizable as f(z) = s(z)t(z) where
m n-m .

(2) sz = § o2t v = [ 82", o) = 8y = 1.
120 1=0

Let the superscript k refer to the kth step in an iterative

process, based on an initial (somewhat arbitrary) choice of the m
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(1) 1 ... (1)

numbers Py » Py . s P . For all values of k we consider

m
(k)

Py = 1. The process consists in establishing a sequence of polynomials

m .
z pi(k)zm—l
i=0

which have s(z) as a limit provided a certain Jacobian does not vanish

(l)zm—i

m
and provided the initial estimate 2 1

i=0
The process presented here is a third-order extension of a pro-

cedure previously established by Newton-Raphson iteration [1].

Starting with the column vector P(k) = [pl(k) pz(k) v pm(k)]t
a new vector P(k+l) is built in four stages.
In the first stage, numbers bs(k), cs(k) and ds(k) (0 < s <n)
are built by the recursion relation
T () (k) (k)
(3) ) P, b i =a., b =0if s <0, 0 < j < n;
j20 1 j-1i 3 s
T W) (k) ® (&
(4) Y} op, e; s =-b, 7, ¢ =0if s <0, 0 < j < nj
j=0 1 j-i h| s -
T (K ® 5 ®
(5) L op,rdyy ==2¢c,0 7, d =0if s <0, 0 < j < n.
4e0 1 j-i s -
Observe that cj(k) can be found as soon as bj(k) is known and dj(k) can

(k)

be found as soon as cj is known. This means that stage one can be

is '"'mear enough" to s(z).



carried out in a single loop. (It is, however, true that cﬁk), d(k) and

n
déEi are not needed.)

Next let an mxm matrix be defined as
(6) ORI <i4 <m

n+l-i-j*’> = —

Here i is the row index and j is the column index. The second stage

consists in finding the inverse of (6), which is denoted by
@) k) - [f(k)], 1< 4,5 <m.

It is observed that (6) is symmetric, therefore (7) is symmetric.

It is a matter of interest that the matrix in (6) is persymmetric,

No further matrix inversions are needed; matrix multiplication
suffices to finish the process. It is observed that the computations
thus far (except for (5)) are those needed for the Newton-Raphson
approach {1, p. 109].

For the third stage, first define the mxm persymmetric matrices

(see (Sﬂ

p (K 3¢k < 3 <
(8 PR N i—r—s]’ 1<irs <m

Here r is the row index and s is the column index.

Next define (see (3)) the column matrix

t

©) 31 L 0 49 Ly )

n-1 n—m+l



and let

(10) @ﬁk) = (B(k))tK(k)ng)K(k)B(k) ,1<di<m,
while

: (k) _ (o) (k) ., . (k) t

(11) v = oY) 5 1",

This completes the third stage.

For the fourth and final stage let

(12) p(eHD) _ p(0) (050 _ 1 (0,00

(Were we to use P(k) - K(k)B(k)

for the right member of (12),

the result would be a Newton-Raphson iteration. This feature is
useful in application, since apparently the second-order technique
locates some factor more readily.)

By the parametric use of functions, techniques can be found
which influence both the rate of convergence and the character of
the region from which convergence to a given factor occurs. Let
gl(P) and gz(P) have derivatives of the necessary orders in the

neighborhood of a solution point 2 = [plp2 .o pm]t (see (2)). In

place of (12) use

() _ ()3 (0 ()

(13) (k) W) _ 1

P -y 2 8)

Then the situation is as follows.
If gz(P) is arbitrary (probably zero is a good choice) and

glco) falls between zero and two, then (13) converges linearly.



1f gz(P) is arbitrary and ng@) is one, then (13) has quadratic

convergence.

Bgl(P)

op

If g209) is one while glﬁlﬁ is one and =0 forl<i-m

i

then (13) is a cubic iterative process.

2. Related Processes and Proof of Convergence

Let a polynomial of degree n in z be described by (1). Let

T m-1i nom n-m-1i
g(z) = ) p,z , Py = 1s h(z) = E b.z ,b.=1.
, i . i 0
i=0 i=0
For 0 < j < n let
by
(14) ) p.b, . =a,, b =0 for s < 0.
jo0 13-4 j s
m-j-1
let r, = Z p.b . ., 0<j~<m=-1. Then it is known and easily
h| . in-j-1i - - -
i=0
verified that
m-1 5
f(z) = g(z)h(z) + Z r.,z .
. i
i=0
Let P = [pl Py 7 pm]t. Then it is clear that bj(P), 0<j <

is a polynomial in P. It is also clear that rj(P), 0<j<m-1, is
polynomial in P. Moreover, factorization occurs if and only if rj(P)
for 0 < j <m - 1, or equivalently, if and only if bj(P) =0,

n-m+1<j=<n.



Lin's method and related methods [2], [3], are first-order
iteration techniques based on equations rj(P)g Convergence occurs
only for special polynomials f(z).

Bairstow's method finds quadratic factors only, and is a second-
order process based on the application of Newton-Raphson to rO(P) and
rl(P) and [9“ p. 472]. One of the present authors has extended this
to factors of arbitrary order, and it is hoped to serve in conjunc-
tion with a future article.

A second-order technique for factors of arbitrary degree, based
on the equations bj(P) and Newton-Raphson, is found in [1].

It is known, and from (l4) it is easy to show that if, for

0 <3 <m,

m
(15) ! psc, . =-b,, c_=0 for s < 0,
jo0 13-1 3 s
3b.(P)
then c _Q(P) = apz , 1 <2 <m, 0 <3j<n.

It may have passed unobserved, but from (15) it is easy to show

that if, for 0 < j < n,

m
¥ = - = i 9
(16) iio pidj—i 2cj, dS 0 if s < O,
2%, (P)
then dj—r—s(P) = apraps s 1l <r,s <m, 0 <j<nm. ~

Indeed, still higher derivatives can be similarly found. More-
over, their computational evaluation is simple, as indicated in conjunc-

tion with relations (3), (4) and (5). Thus in this instance, the



establishment of high-order iteration techniques seems more easily
accomplished by use of high-order derivatives than by multipoint itera-
tion. (In this connection see [§, p. 215].)

To establish (12) and (13) proceed as follows. Let

e ———— psP
Bpiapjapk —m-i-l(P + e )]

Because B(P2) = 0 (see 12) , by Taylor's Theorem

m
(17) -B(P) = ] (p_ - p.) 5o~ B(P)

d

*
——— B (7,P).
Bprapspt ’

A R BT CHER BT CHERS

If we write J(P) = [ 5%—'bn+l_i(P)] where i is the row index

and j is the column index (see (6)) then the first term on the right

side of (17) is



(18) J(P) (P- P).

In similar fashion, using the notation of (8), the second term

of the right side of (17) is

(19) 37 A® = 37 [0 @, ®) -+ q @1°
where
Q;(P) = (2= P)'D (P)(A- P)
and
Di(P) B [dn+1—i—r—s(P)]
2
2D 1 (P)
. N nt+l-i
since dn+l—i—r—s(P) = —*5525;;——- ((see (16)).
Thus from (17)
(20) B(P) = J(B)(P- B) + 37 Q) + R (P)

where Rl(P) may be viewed as a vector of cubic forms in the pr - pr.

Next consider (see (8), (9), (10) and (ll))

t
(21) ¥(P) = [, (P)o,(P) *** @ (P)]

Since B¢ = 0, from Taylor's expansion

(22) -B(P) = J(P)(L - P) + R2(P)

where RZ(P) may be viewed as a vector of quadratic forms in the o, = P

r




Then since K(P) J_l(P) and is symmetric,

(23) 5, (P) = (P- P)tDi(P) (P-P) + R..(P)

3i
where R3i(P) contains only third and fourth order terms in the I

Thus (see (12)), from (20) and (23),

(24) P - K(P)B(P) - ;—, K(P)¥(P) =@ + R(P)

where R(P) is a column vector each of whose entries contains only

terms of third and fourth degree in the pr - P

If J@) is not singular, there exists a closed region & having
KLas an interior point :and within which the coefficients of the terms

(or - pr)(pS - ps)(pt - pt) in R(P) are bounded. If, for a column
vector Z with elements zos by "Z” we mean max [zﬂ, it follows that

1

there is a constant M such that for P ¢ R

(25) RN < ull 2 - 1N

Now let P(l) be so chosen that "19— P(lh|< 8//M where 0 < 6 < 1

and P(l) lies in (R. Then inductively see((lZ), (24) and (25)

D~ o <o) 2P - 4l|% < ¥y

Thus 1im P(k)

k=»

=4 and the process is a third-order process.

The truth of the statements involving (13) follows from similar

considerations.
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